Chinese Journal of Tissue Engineering Research ›› 2019, Vol. 23 ›› Issue (10): 1617-1625.doi: 10.3969/j.issn.2095-4344.1610

Previous Articles     Next Articles

Application of bisphosphonates incorporated into scaffolds in bone defects

Cui Yutao, Li Ronghang, Liu He, Wang Zhonghan, Li Shengyang, Ji Xuan, Yang Fan, Guan Wenqi, Li Zuhao, Wu Dankai   

  1. Department of Orthopedics, Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
  • Received:2018-11-21 Online:2019-04-08 Published:2021-04-28
  • Contact: Wu Dankai, Chief physician, Professor, Master’s supervisor, Department of Orthopedics, Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
  • About author:Cui Yutao, Master candidate, Department of Orthopedics, Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
  • Supported by:

     the National Natural Science Foundation of China, No. 81671804, 81772456 and 81171681 (all to LH)

Abstract:

BACKGROUND: In the process of bone defect healing, the use of biological materials loaded with drugs for local defect intervention can accelerate the repair of the defect, which provides a new method for the local treatment of bone defects.

OBJECTIVE: To introduce the local application of bone tissue engineering scaffolds loaded with bisphosphonates in bone defect repair and to summarize the effects of bone tissue engineering scaffolds as a drug delivery system on the bone defect healing.
METHODS: The authors retrieved PubMed, Web of Science, Springerlink, Medline, WanFang and CNKI databases with “bisphosphonates, alendronate, zoledronate, bone defect, bone tissue engineering” as key words for relevant articles published from 2006 to 2018. Initially, 235 articles were retrieved, and finally 70 articles were selected for further analysis.

RESULTS AND CONCLUSION: Bisphosphonate drug is an effective inhibitor of osteoclast dissolution. It can form a drug sustained release system on the local defect by being loaded to composite scaffolds, promote the formation of new bone and accelerate the healing of the defect. For the drug delivery system of bisphosphonates, suitable scaffold materials are crucial to the osteogenic effect of composite scaffolds in the defect area. At present, the carrier materials used for bisphosphonate-loaded composite scaffolds are mainly divided into organic materials and inorganic materials. Most polymeric organic materials can directly load bisphosphonates to form good drug sustained release in the local area and obviously exert their pro-osteogenic effects, while natural materials and most inorganic materials are often combined with other materials to form composite materials as carriers to optimize the carrier performance. Most studies have also confirmed that these composite materials loaded with bisphosphonates in the defect area exert osteogenic effect in the defect area.

中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程

Key words: Diphosphonates, Tissue Engineering, Bone Transplantation

CLC Number: